

MDOT Requirements for Optimized Aggregates in Concrete

Steve Waalkes, P.E., Director of Engineering – W. Mich. Michigan Concrete Association

What is an "Optimized Aggregate Gradation"?

- General
 - Optimized gradations are those that have been <u>enhanced</u> in some manner in order to enhance some property of the concrete.
- MDDT
 - Focuses on "Well-Graded" aggregate combinations

Optimized Aggregates

What?? If I pump the concrete, I have to use an Optimized Concrete Mixture?

- Yes
- This will continue to be discussed with MDOT
- Trade-off for changing sampling location

Goal of Optimized Aggregates

• Reduce permeability

- Reduce mortar
 - Less shrinking
 - Cost savings related to less cementitious
- Better for pumping and finishing
- Lower w-cm ratio
- Greater durability

Improved Finishing

Less Handwork

Better Barrier Walls

Workability

Harsh initial appearance, but very workable once vibrated

Historically:

- MDOT generated mixture proportions
- Grade P1 paving concrete
 - Type I Portland cement (480 to 564 lbs./cu. yd.)
- Two aggregate blend
 - Coarse aggregate (potentially $\frac{1}{2}$ inch max.)
 - Fine aggregate (often lower spec limit)
 - QA often only checked at aggregate source...segregation likely
- ??? Consistency ???

Making Changes

- Challenges (late 1990's),
 - Enhanced aggregate F-T durability.
 - Addition of third aggregate bin to portable plants allowing for three aggregate blend.

• But,

- No formal optimization tool.
- Inherited another "dead zone".
- Harsh uncontrolled mixture.
- Non-durable mixtures.

History of P1 Mod / P1M / Optimized / High Performance

- 1997 MDOT created the first P1Mod
 - Based on laboratory investigations
- 2004 MDOT retools the P1Mod Spec
 - Utilize three natural aggregates
 - Coarse 1 inch to ¾ inch retained
 - Intermediate 3/8 inch to No. 4 retained
 - Fine No. 8 and finer
 - Optimizing of gradations based on "Shilstone" Method
- 2005 P1Mod upgraded with:
 - Requirement of detailed Stockpile Management Plan
 - Enhanced Process Control Requirements
 - Pay Items

High Performance Concrete Pavement (Grade P1M)

- Stand-alone P1Mod SP no longer utilized
 - Material Specs moved to 2012 Spec Book
 - Optimization procedure and QC/QA for optimized aggregates handled by section 3.09 of MDOT Materials Quality Assurance Procedures Manual
 - Concrete mix development covered in QC/QA Special Provision
- Optimized Aggregates are available for use in concrete mixes other than grade PIM (DM, S2M, other contractor-proposed mixes)

Section 1004 (Portland Cement Concrete Mixtures)

Nomenclature Changed in 2020 Spec Book:

New	3000	3500	3500HP	4000 4500		4500HP	P-NC
Old	S3, P2	P1, S2, T	P1M, S2M	S1	D	DM	P-NC
Used for	Sidewalks Shoulders	Pavement Curb & Gutter Driveways Bridge	High Performance Concrete Pavements High Performance Concrete Curb	Foundations Piles	Bridge Decks Bridge Railing	High Performance Bridge Decks Concrete Barrier Wall	Full Depth Concrete Pavement Repairs

MQAP Section 3.09 – Optimized Aggregate Gradation

- Does not specify MDOT gradation series for aggregates
 - CA retained on $\frac{1}{2}$ inch sieve or greater
 - IA retained on No. 4 and passing $\frac{1}{2}$ inch
 - FA passing No. 4 sieve
- Physical Requirements for each aggregate are located in subsection 902.03.C of the 2020 Spec Book
- LBW (P200) 2% CA, 3% IA & FA
- Max of 5% material with F-T >0.040 retained above ½" sieve

Testing Requirements – Commercial vs. On-Site Plants

- For ready-mix, if aggregates from Prequalified Aggregate Supplier:
 - Producer may utilize aggregate source's current <u>weekly</u> gradation analysis
 - Must QA these QC results weekly to confirm
- If not from Prequalified Supplier or gradations not supplied by aggregate sources
 - Requirements of On-Site batch plant apply (<u>daily</u> gradation testing)
- On-site testing each day of production (on-site, paving)

Optimized Aggregate Gradation Acceptance Criteria

- One test per 5000 tons
- One test per 1000 tons –if not prequalified supplier material
- Use Mini -stockpile sampling protocol – MTM 107
- Use AASHTO method T 248 to
 - Reduce sample size by quartering –CA and IA
 - $\boldsymbol{\diamondsuit}$ Miniature Stockpile sampling for FA

MQAP Section 3.09

- Stockpile Management Plan
 - Process controls for shipping, handling, and storage
- Two different max aggregate sizes

6AA / 6AAA size

- Pavements > 6 inches 2 inch max size
- Pavements ≤ 6 inches = $1\frac{1}{2}$ inch max size
- All other applications = $1\frac{1}{2}$ inch max size

Custom size material (not an

MDOT standard gradation)

Handling/Batching/Timing Aggregate

The "Shilstone" Method

- Utilizes:
 - Fineness Modulus
 - Power 0.45 Charts
 - Percent Retained Charts
 - 5-15 or 8-18 Rule
 - Coarseness Factor
 - Workability Factor

To determine "Optimized" Gradations

Jim Shilstone, Sr., 1923-2010

Combined Gradation

6								
7								
8			6AA	26A	2NS		Combined	Percent
9		% Blend ⇒	50.0%	10.0%	40.0%	0%	100%	Retained
10		Sieve Size		P				
11	50 mm	2	100.0	100.0	100.0	0.0	100.0	0.0
12	37.5 mm	1 1/2	100.0	100.0	100.0	0.0	100.0	0.0
13	25 mm	1	98.6	100.0	100.0	0.0	99.3	0.7
14	19 mm	3/4	77.7	100.0	100.0	0.0	88.9	10.5
15	12.5 mm	1/2	41.6	99.5	100.0	0.0	70.8	18.1
16	9.5 mm	3/8	22.7	79.4	100.0	0.0	59.3	11.5
17	4.75 mm	#4	2.7	9.8	99.0	0.0	41.9	17.4
18	2.36 mm	#8	1.4	3.2	84.0	0.0	34.6	7.3
19	1.18 mm	#16	1.4	2.1	66.0	0.0	27.3	7.3
20	600 µm	#30	1.3	1.8	47.0	0.0	19.6	7.7
21	300 µm	#50	1.3	1.7	19.0	0.0	8.4	11.2
22	150 μm	#100	1.2	1.6	4.0	0.0	2.4	6.1
23	75 µm	#200	0.8	1.6	0.3	0.0	0.7	1.7
24								
25		Coarsene	ss Factor	62.3			34.6	Workability
26								

Power 0.45 Chart

Ideal gradation line representing the maximum aggregate density

Percent Retained Charts

"Haystack" graph

Tarantula Example

Coarseness vs. Workability Chart

• WF = Combined % Passing No.8 Sieve

Coarseness vs. Workability Chart

Zone I Coarse Gap Graded

- High potential for segregation
- Deficient in intermediate material (passing 3/8" and retained on #8)
- Uncontrolled voids
- Excessive "cream" or paste

<u>Subzone O</u>

- Optimum for rounded gravel or cubically crushed stone and natural coarse sand.
- Requires excellent control of aggregate grading and prevention of segregation in the stockpile or bin. If segregation occurs, may fall into Zone V and become nonplastic.

<u>Subzone 1</u>

- Similar to subzone "O" but is more flexible.
 <u>Subzone 2</u>
- Excellent for slipform construction with good particle shape aggregates and good control.

Subzone 3

- Good slipform concrete.
- Highly workable for gravel or cubically crushed stone mixtures and good pumpability for bridge decks.
- May be used for formed flatwork.

Subzone 4

• All-around mixture for many purposes including placement in reinforced vertical construction.

<u>Subzone 5</u>

 A zone where problem aggregates or equipment problems make it necessary to have more than the desirable amount of fine mortar in a mixture.

Zone III Well Graded (only for small top size)

• An extension of Zone II for 1/2" and finer aggregate mixtures.

Zone IV Sandy

- Excessive fines in the mixture.
- Commonly referred to as the "Courthouse" due to potential problems.
- High potential for segregation during consolidation and finishing.

Zone V Rocky

• Too much coarse aggregate - non plastic.

Coarseness vs. Workability – USAF CESA Chart

Zones in MDOT Chart

Job Mix Formula (JMF) Zone

 Contractor's proposed optimized gradation for production, as submitted to the Engineer in the Initial Mix Design, <u>must plot within this</u>

<u>zone</u>

Zones in MDOT Chart

Operating Zone

 Contractor must ensure that the optimized gradation for production plots within this zone

Zones in MDOT Chart

Action Limits

 Contractor's proposed action limits; if <u>production</u> gradation plots outside this zone, steps taken to bring back within this zone. This is NOT a stop production criteria.

MDOT Spreadsheet

FILE HOME INSERT PAGE LAYOUT ↓ ↓ ↓ ↓ ↓ ↓ ↓ <	ORMULAS DATA $A^* A^* = = = 8$ A + = = = 6	REVIEW VIEW 가 문양 Wrap Text 한 전 Merge & Co Alignment	enter - \$ + %		Format as Table + Style	s Cells Editing		
SECURITY WARNING Macros have been disabled. Enable Content								
$E5 agentarrow f_X agentarrow f_X agentarrow 2.64$								
Optimized Aggregate Gradation								
Aggregate Classification	Coarse Aggregate	Intermediate Aggregate	Fine Aggregate			16.0 Later 15/2		
Relative Percent	28.95	29.03	42.01	Theoretical	Theoretical			
	900.0	900.0	1350.0	Combined	Combined			
Specific Gravity —	2.55	2.55	2.64	Gradation	Gradation	8.0 7.9 8.7 9.2 9.8		
Sieve Size	1	Percent Passing		%Passing %Retained		5 .0 4.0 2.0 2.4 3.1		
2 inch	100	100	100	100.0	0.0	0.0 +		
1½ inch	91.7	100	100	97.6	2.4	2" 1.5" 1" .75" .5" .375" #4 #8 #16 #30 #50 #100		
1 inch	40.8	100	100	82.9	14.7	Chart Area		
¾ inch	17.8	99.4	100	76.0	6.8			
1/2 inch	9.9	83.8	100	69.2	6.8	50		
3/8 inch	9.4	57.1	100	61.3	7.9	45		
No. 4	9.2	13.5	94.2	46.2	15.2			
No. 8	9.2	5.1	73.9	35.2	11.0	40		
No. 16	9.2	3.7	54.1	26.5	8.7	35 🚔		
No. 30	9.1	3.3	32.5	17.2	9.2	30 2		
No. 50	9.1	3.2	9.2	7.4	9.8	25 \$		
No. 100	9.1	3	2	4.3	3.1	20		
Calculations Combined Grada	on CF vs. WF C	ompatibility Report	(+)			80 75 70 65 60 55 50 45 40 35		

Optimized Aggregates – QA

- Acceptance (3.09.08)
 - Acceptance of the combined aggregate gradation will be based on the ability of the combined aggregate gradation to plot within the <u>Operating Zone Boundary</u>
 - Loss by Wash < Spec Requirement

How To Implement Optimized Mixtures for Paving?

- Three bins on the plant
- "Coarse" limestone, 6AAA quality (0.040 F/T), crushed to "custom" size/gradation
- "Intermediate" agg, 0.067 F/T, crushed to "custom" size/gradation
 - Particles >½ inch must meet quality specs for coarse aggregate (F-T dilation); anything >½ inch that doesn't meet F-T limited to less than 5% of total aggregate

• Daily gradation testing

How To Implement Optimized Mixtures for DM & S2M?

- Possibly extra or dedicated bin
- 6AAA quality limestone, 0.040 F/T, 6AA size
- "Intermediate" agg, 0.067 F/T, (26A or 29A)
 - Particles >½ inch must meet quality specs for coarse aggregate (F-T dilation); anything >½ inch that doesn't meet F-T limited to less than 5% of total aggregate
- Weekly gradation testing

Questions?

swaalkes@miconcrete.net 616-633-9629

Thank you!!

