ASPIALITHE SMOOTH QUIET RIDE

Michigan Aggregates Association

MDOT HMA Mix Selection &

Design Changes

February 2nd, 2022

Presentation Outline

- History
 - Evolution of mix design
 - Binders
- What is Regression?
- RAP
- APAM Mix Recommendations
- New MDOT Mix Designations

Mix History

1970's (Marshall)

- 4.11 Bituminous Aggregate Pavement
- 4.12 Bituminous Concrete Pavement
 - -9A Binder
 - 25A Leveling/Wearing
 - -31A Wearing

Stability Mixes (Marshall) 1980's

- #500 & #700 20C Bases
- #1100 L & T 20A, 20AA
- #1300, #1500, #1800 L &T 20AA

Performance Mixes (Marshall)

1990's

•	2C	Bases

- 3B, 3C Leveling
- 4B, 4C Top
- 11A Base, Leveling
- 13, 13A Base, Leveling, Top
- 36A, 36B Leveling, Top

SuperPave Mixes 2000's

- LVSP, E03, E1, E3,
 E10, E30, E50 (EL,
 EML, EMH & EH)
- 2E03 thru 5E50

SuperPave Mixes

5EL:

5 = Mixture Number (2 thru 5) corresponds to aggregate gradation

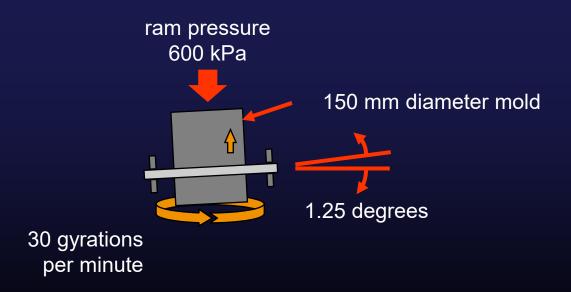
2 = Base Mix

5 = Top Mix

SuperPave Mixes

5EL:

EL = Mixture Type


corresponds to estimated traffic

EL thru EH

Marshall vs. Superpave Mix

- 1. Compaction of mix design samples
 - a. Marshall Hammer
 - b. Gyratory Compactor
- 2. Aggregate Properties
- 3. Mix Design Air Voids

Mix Gradation

	5E	4E	LVSP	13A	36A	4C
1 ½ inch						
1 inch						
¾ inch		100	100	100		100
½ inch	100	90-100	75-95	75-95	100	91-100
3/8 inch	90-100	≤ 90	60-90	60-90	92-100	≤ 90
No. 4	≤ 90		45-80	45-80	65-90	≤ 67
No. 8	47-67	39-58	30-65	30-65	55-75	15-52
No. 16			20-50	20-50		≤ 37
No. 30			15-40	15-40	25-45	≤ 27
No. 50			10-25	10-25		≤ 20
No. 100			5-15	5-15		≤ 15
No. 200	2 - 10	2 - 10	3 - 6	3 - 6	3 -10	3 - 6

SuperPave vs. Marshall

Asphalt Cement History

Asphalt Cement History

Penetration Grades – 1920's

85-100

120-150

200-300

Viscosity Grades – 1960's

AC-2.5

AC-5

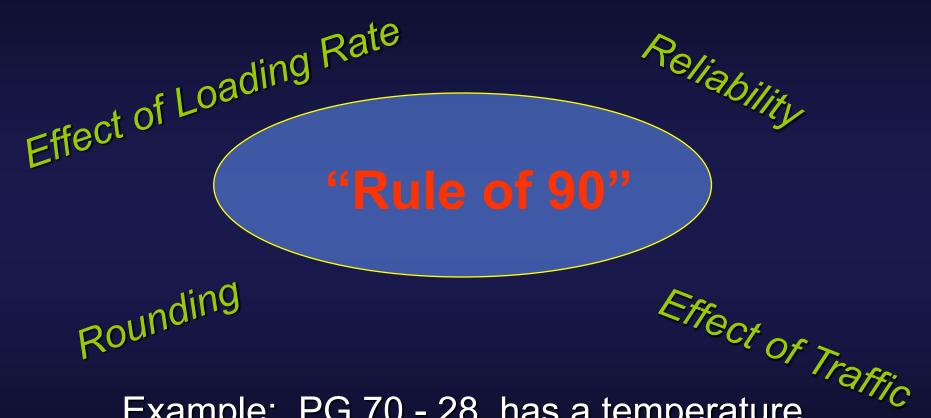
AC-10

PG Binders: Mid 90's
 PG 58-28

SUPERPAVE Performance Grade (PG) Binder Specification

- Fundamental properties related to pavement performance
- In-service & construction temperatures
- Short and long term aging

Superpave Asphalt Binder Specification


The grading system is based on climate

PG 58 - 28

Min pavement temperature Grade

Average 7-day max pavement temperature

Is a PG a Modified Binder?

Example: PG 70 - 28 has a temperature range of 70 to - 28 or 98 C. Therefore, this binder is probably modified !! (Depends on Asphalt Source!)

What Binders are Used in Michigan

- 76-28P
- 70-22P, 70-28P
- 64-28, 64-34P
- 64-22
- 58-28
- 58-22, 58-34

Presentation Outline

- History
 - Evolution of mix design
 - Binders
- What is Regression?
- RAP
- APAM Mix Recommendations
- New MDOT Mix Designations

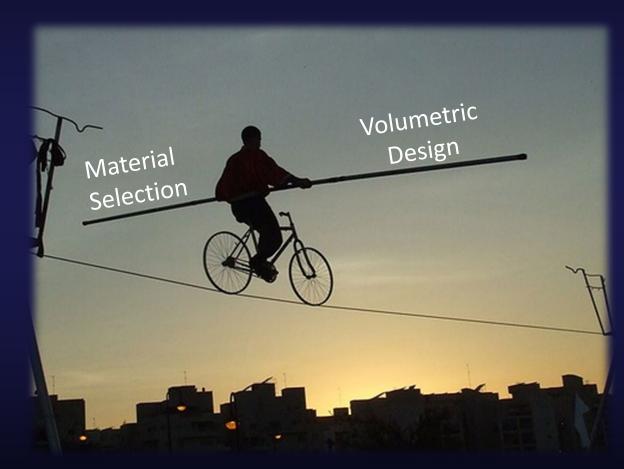
Important Asphalt Mix Properties ASPHALT

We want

- Stability
- Durability
 - Fatigue resistance
 - Low temperature crack resistance
- Impermeability
- Workability

How? **Materials Selection** Volumetric design

Mix Design Goals Balancing Act


Smooth Quite Ride

Strength & Stability

No

- Rutting
- Shoving
- Flushing

Workability

Durable

No

- Cracking
- Raveling

Skid Resistance

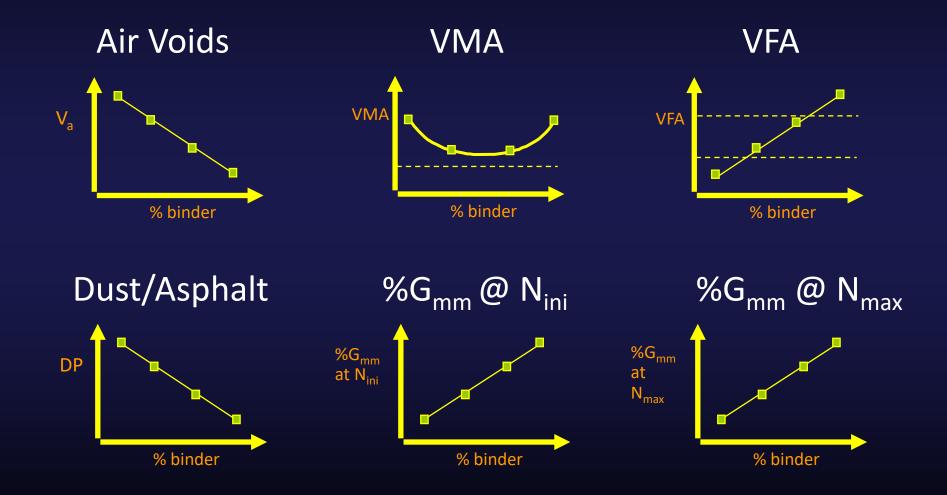
Requirements for All Designs

- Sufficient asphalt binder to ensure a durable pavement
- Sufficient stability under traffic loads
- Sufficient air voids
 - Upper limit to prevent excessive environmental damage
 - Lower limit to allow room for initial densification due to traffic
- Sufficient workability

Changes made in MDOT mixture specifications to improve durability:

- 2012- Regressed air voids from 4.0% to 3.5%.
- Resulted in about 0.2% additional asphalt cement in these mixes.
 (PWL spec 12SP501 (U), 09-27-11)
- October 2014 -Regressed air voids from 3.5 % to 3.0 %.
- The first projects were let in the October 2014.
- Apply to all mixtures starting in March 2015. (PWL spec 12SP501 (U-03), 12-08-14)
- January 2015- Eliminated the use of coarse graded Superpave mixtures for top and leveling courses. Fine graded mixtures required.

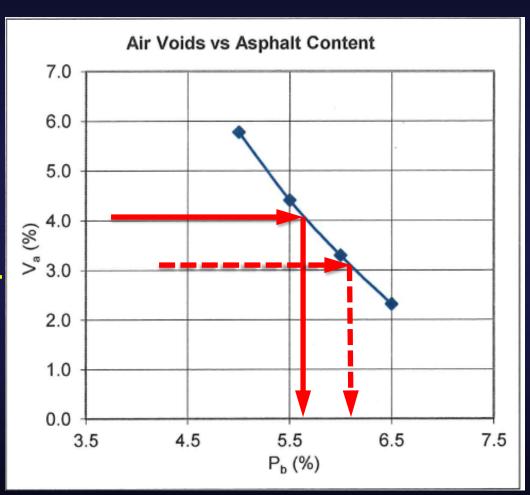
Air Void Regression



Air Void Regression Basics:

- To Improve durability of HMA
- Mix Design done at 4.0% Air Voids
 - APAM Suggests regression of all top course mixes to 3.0% Air Voids
- Looking at Mix Design, the AC needed to achieve 3.0% Air Voids is Determined.

Design Binder Content



Air Void Regression

Original Optimum %AC = ~ 5.7 Regressed Optimum %AC = ~ 6.1

Presentation Outline

- History
 - Evolution of mix design
 - Binders
- What is Regression?
- RAP
- APAM Mix Recommendations
- New MDOT Mix Designations

Why Recycle RAP into HMA?

- Best and Highest use
- Same or better performance as virgin mix
- Reduces demand for new materials
- Reduces carbon footprint
- Contains valuable materials
- Save \$

Why Recycle RAP into HMA?

RAP contains valuable materials :

◆ Aggregate ~ 94% @ \$17/ton

Asphalt ~ 6% @ \$350/ton

Value = \$36.98 /ton (minus processing)

Economic Savings Example

Aggregate: \$17.00/ton

Asphalt: \$350.00/ton

• RAP: \$9.00

Mix Design AC Content: 6.0%

Material	0% RAP	17% RAP	27% RAP
Aggregate	\$15.98	\$13.09	\$11.39
Asphalt	\$21.00	\$17.43	\$15.33
RAP		\$1.53	\$2.43
Total	\$36.98	\$32.05	\$29.15
\$ Savings		\$4.94	\$7.83
% Savings		13.4%	21.2%

Recommended Practices for Use of RAP

Follow best practices for the processing and management of RAP

Contractor to sample and test RAP during processing

RAP usage specification

RAP mixes should meet same specs as virgin mixes

Adjust binder grade appropriately

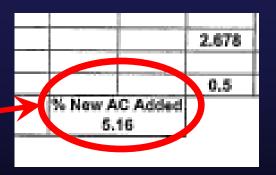
Approved mix design including RAP

Recommended Practices for Use of RAP

Approved mix design including RAP

Know the properties of the RAP

Gradation, binder content,
 theoretical maximum specific gravity


Mix design must be done incorporating RAP and taking into account the RAP characteristics

Mix Design Example

Michigan Department of Transportation form 1931 SU				Report of Test PERPAVE ™ HMA Design Mix Formula				File 300			
Distribution: Project Engineer (1) TMI				rekrave maa besign mix romula i (1) Mix Design (1) Contractor (1) Bit File (1				ACCEPTED			
						ering Firm Date					
Contractor		54	321A	_ F			L	MDOT	Diant No		9/0X
General Pavement				Plant Location Plant No.					o. 701-01		
Mix Type	Mix Des	ign Num		Project						cation	
5E3 % Air Voids	VMA	06MD54	0	hera Inneren				03SP501(F		(F)	
4.0	VMA	15.9		VFA P200/Pbe 74.8 1.1		AWI 288		AI 40.9			
Gmm	Gmb			Gb Gsb			Gse		Film Thickness		
2.457		2.359		1.029		2.644		2.682		7.21	
	Α	В	C	D	E	F	G	Н		J	
Pit Number	54-101	54-101	95-76	95-76						Plant	% AC
Aggregate Type	Sand F8U	Slag Sand	SHE PSU	Sand	DHF		ĺ	1		Rap	5.7 9,48%
Blend %	10.0%	15.0%	26.0%	33.0%	1.0%					15.0%	Combined
Sieve Size			G	RADATIO	ON			% Binde	r of RAP	3.60	Gradefini
1 1/2" - (37.5mm)						_					0.0%
1" - (25.0mm)											0.0%
3/4" - (19mm)											0.0%
1/2" - (12.5mm)	100.0%	100.0%	100.0%	100.0%	100.0%					100.0%	100.0%
3/8" - (9.5mm)	100.0%	100.0%	100.0%	100.0%	100.0%	_				87.5%	98.1%
#4 - (4.75mm)	91.3%	91.7%	65.0%	99.9%	100.0%					67.9%	83.9%
#8 - (2.36mm)	69.9%	59.6%	39.7%	79.9%	100.0%					50.2%	61.1%
#16 - (1.18mm)	52.4%	38.7%	29.2%	66.2%	100.0%					40.8%	47.6%
#30 - (0.80mm)	36.8%	26.3%	23.8%	54.9%	100.0%					33.6%	38.0%
#50 - (0.30mm)	11.8%	18.0%	17.2%	24.9%	100.0%					20.8%	20.7%
#100 - (0.1mm)	3.6%	11.7%	11.7%	2.5%	100.0%					10.6%	8.6%
#200 - (0.075mm)	2.5%	7.7%	9.0%	0.4%	85.0%					7.4%	5.8%
1 FACE CRUSH %	30.0%	100.0%	100.0%	30.0%						75.0%	88.6%
2 FACE CRUSH %											
A. ABRASION & YEAR		25-02	22-03								
Angularity Index	37.8	48.8	43	38							40.90
AWI FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	-
AWI VALUE #16	225	401	300	240						240	288
COMBINED Calc. Gab 4+ COARSE BULK S.G.	2.601	2.720	2.610	2.648	-					2.675	2.648
W COARSE BULK S.G.		0.700	2.621								
FINE BULK S.G.	2.601	2.702	2.582	2.648							
LAT & ELONGATED %	2.001	2.13	2.019	2.040						2.678	
SOFT PARTICLES %	0.1		0.5	0.5	-				-	0.5	
OUT I PARTICLES /	Asphalt	Binder	Grade PG 6		A.C. Sup		N	% New A0		0.5	
REMARKS:								5.1			
te bitumen contact and aggregate characteristic strictis at their samblems may require adjusten o contrivation seasons from data separate and pyris on like with the Elizamone Contoce Link.	siblemen system end ngampfel-chanschildter mis bewed on the submitted instended with the guideline and distribution before he followed by the position and distribution on the submitted by the submitted of the submitted by the submitted by the submitted of the submitted by the s										
								Bit	uminous	Engine	er

Н	ı	J		
		Plant	% AC	1
			5.7	
		Playetta	9.48%	
		15.0%	Combined	
% Binde	r of RAP	3.60	(Hossand)	
			0.0%	

Recommended Practices for Use of RAP

Test the produced Mix:

(Binder, Gradation)

Contractor Quality Control Tests

Owner Quality Assurance / Acceptance tests

If you have performance concerns:

Consider testing/monitoring other properties

Mix volumetrics (Air Voids, VMA)

Fines to Effective Binder Ratio

Presentation Outline

- History
 - Evolution of mix design
 - Binders
- What is Regression?
- RAP
- APAM Mix Recommendations
- New MDOT Mix Designations

APAM Mix Recommendations

APAM suggests avoiding the use of 13A/LVSP Mixes

- a. Coarse graded 13A (LVSP) mixes don't look good
 - i. Appearance is not a "specified" item, but it can become a problem when the mix "looks" bad.
 - ii. They are more susceptible to segregation, which can lead to performance issues.

Mix Recommendations

APAM Suggested Top Course Mixes

Use 5E (SuperPave) Mix

nice appearance and

The traveling public will appreciate the nice appearance and good performance.

5E Superpave Mixture

- Regress mix to 3% air voids.
- Appropriate for traffic level
- Layer thickness between 1 ½" to 2"

Consistency is Important

In order to have better quality, more cost-effective mixes:

- a. Fewer mix designs in a plant's operating area is desirable.
 - It is not efficient for one plant to make 10 different 5E1 mixes.
- b. Avoid small quantities of a single mix.
- c. Avoid small quantities of special binders.

Less is More

- Less mix designs.
- Less yard space.
- Less variability.
- Less cost.

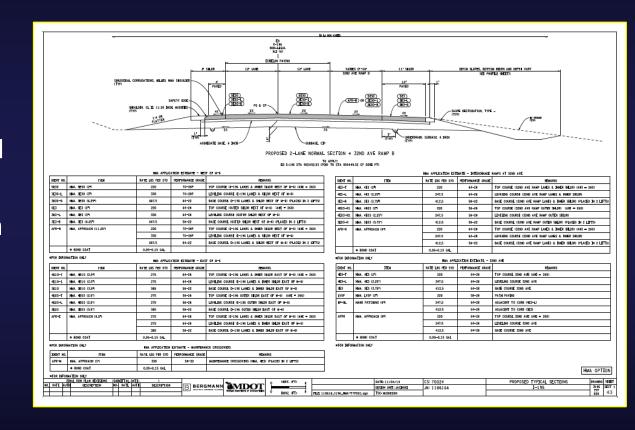
LESS

- More streamlined.
- More efficient.
- More consistent.

More lane miles paved.

MORE

Presentation Outline



- History
 - Evolution of mix design
 - Binders
- What is Regression?
- RAP
- APAM Mix Recommendations
- New MDOT Mix Designations

New MDOT Mix Designations

- LVSP and E03 combined into EL
- E1 and E3 combined into EML
- E10 and E30 combined into EMH
- E50 eliminated and replaced with EH
- Gap Graded Superpave (GGSP)
 renamed to Stone Matrix Asphalt
 (SMA) to be consistent with
 national standards

New MDOT Mix Designations

Major changes made to Tables 501-3 and 902-6

- New Mix Design Designations
- Changes mostly relevant to Mix Designers

 Minor changes to Tables 501-1, 501-2, 501-4 and 902-5

New MDOT Mix Designations

MICHIGAN DESIGN MANUAL ROAD DESIGN

6.03.09A1d (continued)

Hot Mix Asphalt (HMA) Mixture Selection Guidelines

North, Grand, Bay, Southwest and University Region

North, Grand, Bay, Southwest and University Region												
Mixture Type	нма м	ainline <mark>and Ramps</mark>	High Stress HMA									
EH, SMA	PG 70-28P	Top & Leveling Course	PG 76-28P	Top & Leveling Course								
	PG 64-22	Base Course	PG 64-22	Base Course								
EML, EMH	PG 64-28	Top & Leveling Course	PG 70-28P	Top & Leveling Course								
	PG 58-22	Base Course	PG 58-22	Base Course								
EL	PG 58-28	Top & Leveling Course	PG 64-28	Top & Leveling Course								
	PG 58-22	Base Course	PG 58-22	Base Course								

Superior Region

Mixture Type	HMA N	lainline <mark>and Ramps</mark>	Hig	gh Stress HMA
EL, EML, EMH	PG 58-34	Top & Leveling Course	PG 64-34P	Top & Leveling Course
	PG 58-28	Base Course	PG 58-28	Base Course

Metro Region

Mixture Type	HMA Ma	ainline and Ramps	High Stress HMA					
EH, SMA	PG 70-22P	Top & Leveling Course	PG 76-22P	Top & Leveling Course				
	PG 64-22	Base Course	PG 64-22	Base Course				
EML, EMH	PG 64-22	Top & Leveling Course	PG 70-22P	Top & Leveling Course				
	PG 58-22	Base Course	PG 58-22	Base Course				
EL	PG 58-22	Top, Leveling & Base Course	PG 64-22 PG 58-22	Top & Leveling Course Base Course				

NOTES:

- For shoulders paved greater than or equal to 8 feet or in a separate operation, use PG 58-28 for top and leveling course and PG 58-22 for base course for all Regions
- For Temporary Roads, commercial and private Approaches, Wedging, and Hand Patching, use PG 64-22 for all Regions except Superior and North, use PG 58-28.

Table 501-3

	Existing Criteria												
Superpave Gyratory Compactor (SGC) Compaction Criteria													
Number of Gyrations													
Estimated Traffic (million ESAL)	Mix Type	%Gmm at (Ni)	Ni	Nd	Nm								
< 0.3	LVSP	91.50%	6	45	70								
< 0.3	E03	91.50%	7	50	75								
< 1.0	E1	90.50%	7	76	117								
< 3.0	E3	90.50%	7	86	134								
< 10	E10	89.00%	8	96	152								
< 30	E30	89.00%	8	109	174								
<100	E50	89.00%	9	126	204								

	Proposed Criteria													
Superpave Gyratory Compactor (SGC) Compaction Criteria														
Number of Gyrations														
Estimated Traffic (million ESAL)	Mix Type	%Gmm at (Ni)	Ni	Nd	Nm									
≤ 0.3	EL	≤91.5%	7	50	75									
>0.3 -≤3.0	EML	≤90.5%	7	75	115									
>3.0 - ≤30.0	EMH	≤89.0%	8	100	160									
>30.0 - ≤100	EH	≤89.0%	9	125	205									

Table 902-6

	Existing Criteria														
	Superpave Aggregate Requirements														
		Percent Crushed Minimum Criteria		Fine Aggregate Angularity Minimum Criteria		% Sand Equivalent Minimum Criteria		Los Angeles Abraision % Loss Maximum Criteria		% Soft Particles Maximum Criteria (a)		% Flat and Elongated Particles Maximum Criteria (b)			
Estimated Traffic (million ESAL)	MixType	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base		
< 0.3	LVSP	55/-	-	-	-	40	40	45	45	10	10	-			
< 0.3	E03	55/-	-	-	í	40	40	45	45	10	10	-	-		
< 1.0	E1	65/-	-	40	ij	40	40	40	45	10	10	-	-		
< 3.0	E3	75/-	50/-	43	40	40	40	35	40	5	5	10	10		
< 10	E10	85/80	60/-	45	40	45	45	35	40	5	5	10	10		
< 30	E30	95/90	85/75	45	40	45	45	35	35	3	4.5	10	10		
<100	E50	100/100	95/90	45	45	50	50	35	35	3	4.5	10	10		

					J	Proposed Criteria	à.	Proposed Criteria														
	Superpave Aggregate Requirements																					
		Minimum Crite	eria	Angularity Mini	mum	Minimum Crite	eria	Abraision % L	oss	Maximum Criteri	ia (a)	Particles Maxin	mum									
Estimated Traffic (million ESAL)		Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base									
≤ 0.3	EL	55/-	-	-		40	40	45	45	10	10	-	-									
≥ 0.5	EL	55/-	-	-	-	40	40	45	45	10	10	-	-									
>0.3 - <3.0	EML	75/-	50/-	43	40	40	40	35	40	5	5	10	10									
20.3 - ≤3.0	ENIL	75/-	50/-	43	40	40	40	35	40	5	5	10	10									
>2.0 <30.0	EMH	90/85	80/75	45	40	45	45	35	35	3	4.5	10	10									
>3.0 - ≤30.0 EMH	90/85	80/75	45	40	45	45	35	35	3	4.5	10	10										
>30.0 - ≤100	EH	100/100	95/90	45	45	50	50	35	35	3	4.5	10	10									

⁽a) Soft particles maximum is the sum of the shale, siltstone, ochre, coal, clay-ironstone and particles that are structurally week or are non-durable in service.

Note: "85/80" denotes that 85 percent of the coarse aggregate has one fractured face and 80 percent has at least two fractured faces.

⁽b) Maximum by weight with a 1 to 5 aspect ratio.

Table 902-6

For information only 2020 Spec Book with Errata as of 01-07-22

Section 902

Table 902-6: Superpave Final Aggregate Blend Physical Requirements

				Minimum	Criteria			Maximum Criteria							
		% Crus	hed ^(a)	Fine Agg Angula	-	% Sa Equiva		LA Abra		% So Particle		% Flat Elong Particl	ated		
Est. Traffic				Cours	e(s)			1		Course(s)					
(million ESAL)	Mix Type	Top and Leveling	Base	Top and Leveling	Base	Top and Leveling	Base	Top and Leveling	Base	Top and Leveling	Base	Top and Leveling	Base		
< 0.3	EL	55/—	1-1	_	_	40	40	45	45	10	10	1-0	_		
≥0.3 - <3	EML	75/—	50 / —	43	40	40	40	35	40	5	5	10	10		
≥3 – <30	EMH	90 / 85	80 / 75	45	40	45	45	35	35	3	4.5	10	10		
≥30 - <100	EH	100 / 100	95/90	45	45	50	50	35	35	3	4.5	10	10		

ESAL = equivalent single-axle load

Clarifies abrasion maximums are based on the combined blend

⁽a) XX / YY denotes that XX% of the coarse aggregate has one fractured face and YY% has at least two fractured faces.

⁽b) If a blend of different aggregate sources, the abrasion value applies to each source.

⁽eb)Soft particles maximum is the sum of the shale, siltstone, ochre, coal, clay-ironstone, and particles that are structurally weak or non-durable in service.

⁽dc) Maximum by mass with a 1:5 aspect ratio.

Local Roads

	Existing Criteria														
	Superpave Aggregate Requirements														
	Percent Crush Minimum Crit	Angularity Minimum			Sand Equivalent I in imum Criteria Los Angeles Abraision % Loss Maximum Criteria		oss	% Soft Partic Maximum Criter		% Flat and Elongated Particles Maximum Criteria (b)					
Estimated Traffic (million ESAL)	MixType	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base		
< 0.3	LVSP	55/-	ì	-	1	40	40	45	45	10	10	į	-		
< 0.3	E03	55/-		-	-	40	40	45	45	10	10		-		
< 1.0	E1	65/-	-	40	-	40	40	40	45	10	10	-	-		
< 3.0	E3	75/-	50/-	43	40	40	40	35	40	5	5	10	10		

	Proposed Criteria													
	Superpave Aggregate Requirements													
	Minimum Criteria Angularity Minimum Minimum Criteria Abraision % Loss Maximum Criteria (a) Particles Maximum													
Estimated Traffic (million ESAL)	_	Top & Leveling	Base											
<02	TOT	55/-	1	-	-	40	40	45	45	10	10	-	2.	
≤ 0.3	EL	55/-	-	-	-	40	40	45	45	10	10		-	
>0.3 - ≤3.0	EML	75/-	50/-	43	40	40	40	35	40	5	5	10	10	
>0.3 - ≤3.0	ENIL	75/-	50/-	43	40	40	40	35	40	5	5	10	10	

Concern over E1 moving to EML

Questions?

Chuck Mills, PE
Director of Engineering

cmills@apa-mi.org (517) 896-1468

Asphalt.